
Security Bot
Release 0.1.0

Maxim Sokolov

Jun 22, 2023

CONTENTS

1 Getting Started 1
1.1 Prerequisites . 1
1.2 Deployment . 2
1.3 Service Configuration . 2
1.4 Workflow Configuration . 3
1.5 Integration . 3

2 Configuration 5
2.1 Service Configuration . 5
2.2 Workflow Configuration . 6

3 Integration 9
3.1 Configuration Files . 9
3.2 Authorization . 9
3.3 Input Entity Sources . 12
3.4 API . 13
3.5 Pipeline . 14

4 Glossary and Inventory 15

Index 19

i

ii

CHAPTER

ONE

GETTING STARTED

On this page, you will find all the necessary information to dive into the Security Bot (SecBot) project to

• set up the service and the documentation generator it uses,

• configure and integrate it with your service,

• ensure communication via API, and

• get familiar with the main concepts and limits.

Yet, we provide detailed descriptions and insights on separate pages of this documentation.

1.1 Prerequisites

Since SecBot is a Python application running in a container on Kubernetes, make sure that the relevant components
and their packages are installed and available in your local environment.

Kubernetes-related:

• Docker

• Kubernetes

• Kubernetes Cluster

• Container registry, for example Docker Hub

• and other Containerization tools, for example Docker Compose

Python-related:

• Python

• PIP

• Poetry

Additionally, we employ

• Sphinx as a documentation generator and

• draw.io as a tool for creating schemes and diagrams.

1

https://docs.docker.com/get-docker/
https://kubernetes.io/docs/setup/
https://kubernetes.io/docs/tasks/tools/
https://docs.docker.com/docker-hub/
https://docs.docker.com/compose/install/
https://docs.python.org/3/using/index.html
https://packaging.python.org/en/latest/tutorials/installing-packages/#installing-pip-setuptools-wheel-with-linux-package-managers
https://python-poetry.org/docs/#installing-with-the-official-installer
https://docs.readthedocs.io/en/stable/intro/getting-started-with-sphinx.html#quick-start
https://app.diagrams.net/

Security Bot, Release 0.1.0

1.2 Deployment

Follow these general steps to install and build the SecBot

1. Clone the repository:

a. visit the project’s repository to copy the URL under Clone

b. run the git clone command to create a local copy

$ git clone path/to/project.git

2. Build and run the SecBot service.

$ docker-compose up --build

1.3 Service Configuration

The /.env.dev file defines the location, keys, and other parameters of the internal and external units SecBot commu-
nicates with: queues, databases, Inputs, Scans, Outputs, and Notifiers.

1. Review this file and make the necessary changes to it based on your environment’s peculiarities, such as the
variables within GITLAB_CONFIGS.

2. Save the file and rebuild the service.

$ docker-compose up --build

For test and other reasons, you can redefine any parameter in the /.env.override file for your separate sandbox
environment. To do this,

1. Rename the original file of /.env.override.example accordingly

2. Specify the new values of existing variables there, for example modify
DEFECTDOJO__TOKEN=defectdojo_token

Excerpt from .env.override

...
DEFECTDOJO__TOKEN=my_personal_token
...

3. Save the file.

4. Rebuild the service.

$ docker-compose up --build

Note: For more detailed information on this topic, see Configuration.

2 Chapter 1. Getting Started

Security Bot, Release 0.1.0

1.4 Workflow Configuration

The /app/config.yml file defines the policies SecBot follows in its work: which Scans to launch to check input
entities of a particular type, which Outputs to use to aggregate the Scans’ results, and so on. You can take the original
version and use it as is or update the file according to your needs. In the latter case, you will need stop and restart the
service.

$ docker-compose stop
$ docker-compose up -d

Note: For more detailed information on this topic, see Configuration.

1.5 Integration

Since SecBot communicates with different units via their respective APIs and triggers in response to specific input
events, you are expected to

• obtain authorization with these units (Inputs, Outputs, and Notifiers) and

• specify triggers on your development and distribution platform (Input), such as system hooks (or webhooks) for
GitLab.

1.4. Workflow Configuration 3

Security Bot, Release 0.1.0

4 Chapter 1. Getting Started

CHAPTER

TWO

CONFIGURATION

The content of this page is focused on the peculiarities and details of the service and workflow configuration files to let
you make more informed decisions when customizing the Security Bot (SecBot) service for your needs.

2.1 Service Configuration

SecBot’s configuration implies setting up all the

• internal (queues and databases) and

• external (Inputs, Scans, Outputs, and Notifiers) units

this service collaborates with and specifying other relevant parameters (metrics) as well.

Therefore, you need to review and update the respective /.env.dev file in advance to reflect your environment’s
peculiarities.

Excerpt from .env.dev

...
CELERY_BROKER_URL=redis://redis:6379/0
CELERY_RESULT_BACKEND=redis://redis:6379/0

SECBOT_POSTGRES_DSN=postgresql+asyncpg://secbot:foobar@db:5432/secbot

GITLAB_CONFIGS=[
{

"host":"https://git.env.local/", # GitLab's host (instance)
"webhook_secret_token":"SecretStr", # secret token used when a webhook is␣

→˓being set up
"auth_token":"SecretStr", # token given to the user who will␣

→˓communicate with the API to get check results
"prefix":"GIT_LOCAL" # prefix used when a security_check_id␣

→˓is being generated
}

]

DEFECTDOJO__URL=https://defectdojo.env.local # DefectDojo's host
DEFECTDOJO__TOKEN=defectdojo_token # token given upon user registration to␣
→˓communicate with the DefectDojo's API
DEFECTDOJO__USER=defectdojo_username # registered user's name
DEFECTDOJO__USER_ID=10 # registered user's ID

(continues on next page)

5

Security Bot, Release 0.1.0

(continued from previous page)

SLACK_TOKEN=token_here # token given to the user that is␣
→˓allowed to read Slack's channels
...

After that, save the file and rebuild the service.

$ docker-compose up --build

Additionally, according to the /.gitignore file, any parameter specified in /env.dev can be redefined in /.env.
override for testing and other purposes.

Excerpt from .gitignore

...
Personal override env
.env.override
...

To do this,

1. Rename the original file of /.env.override.example accordingly

2. Specify the new values of existing variables there, for example modify
DEFECTDOJO__TOKEN=defectdojo_token

Excerpt from .env.override

...
DEFECTDOJO__TOKEN=my_personal_token
...

3. Save the file.

4. Rebuild the service.

2.2 Workflow Configuration

The workflow configuration is a set of policies according to which SecBot reacts to incoming events, processes the data,
and yields the results. This configuration is based on the app/config.yml file that contains two sections: components
and jobs.

The first section introduces the hired external units (Scans, Outputs, and Notifiers) which SecBot collaborates with. It
might include a unit’s name (handler name) and its settings: format of data it returns, URLs, keys, etc.

The following excerpt shows an example of three units belonging to different types. (The environment variable values
refer to the .env.dev file.)

Excerpt from app/config.yml

...
components:

Scan Gitleaks
gitleaks:

(continues on next page)

6 Chapter 2. Configuration

Security Bot, Release 0.1.0

(continued from previous page)

handler_name: "gitleaks"
config:

format: "json" # data format in a response
Output DefectDojo
defectdojo:

handler_name: "defectdojo"
env:

url: "DEFECTDOJO__URL" # host
secret_key: "DEFECTDOJO__TOKEN" # token given upon user registration to␣

→˓communicate with the API
user: "DEFECTDOJO__USER" # registered user's name
lead_id: "DEFECTDOJO__USER_ID" # registered user's ID

Notifier Slack
slack:

handler_name: "slack"
config:

render_limit: 10 # maximum number of lines (findings) in␣
→˓a notification

channel: # channels to report findings
- test-sec-security-bot
- my-personal-channel

env:
token: "SLACK_TOKEN" # token given to the user that is␣

→˓allowed to read the channels
...

Note: For now, these are the only components SecBot collaborates with. However, it must be sufficient for the first
version of the product to let you assess its work.

The second section, “jobs”, defines the policies SecBot follows in its work to yield the results. When a specific event
matching the rules of a policy comes up, a processing plan (job) is created. It contains the necessary number of tasks
to be sequentially executed by the relevant external units (components).

The following excerpts from the app/config.yml file show an example of one job to explain the idea.

Excerpt from app/config.yml

...
jobs:

human-readable job name to be used as a reference in logs
- name: Common merge request event

two-level identifier of an input entity
rules:

gitlab: # first level
event_type: "merge_request" # second level
project.path_with_namespace: /gitlab-test/ # second level

, where

• first level is a development or distribution platform (Input) or any custom workflow name.

• second level is Input entity (input event) types and keys (JSON path strings) to apply checks and filtration within

2.2. Workflow Configuration 7

Security Bot, Release 0.1.0

the input events. For available keys, refer to the objects from a payload (request body). For example, project.
path_with_parameters from POST [host]/v1/gitlab/webhook enables the filtering of input events orig-
inating from specific repositories.

Also, note that the arguments at the second level are joined with logical AND unless they are matching and thus
mutually exclusive. That is, if, for example, event_type: "tag_push" and event_type: "merge_request"
are specified in the same job, the last one will be taken.

Excerpt from app/config.yml (continuation)

handlers to find leaks, vulnerabilities, and other security-related issues
scans:

- gitleaks

handlers to aggregate and normalize the Scans' results
outputs:

- defectdojo

handlers to report the Outputs' results
notifications:

- slack
...

Note: For now, only one job is allowed to cover a particular event. If your configuration implies that two or more jobs
can be created to serve the same event, it will result in an error.

Information from the app/config.yml file is read once as soon as SecBot starts. Therefore, if you make any changes
to it, you need to stop and restart the service to apply them.

$ docker-compose stop
$ docker-compose up -d

8 Chapter 2. Configuration

CHAPTER

THREE

INTEGRATION

On this page, you will find an adequate checklist and step-by-step instructions to ensure the successful integration of
your service with the Security Bot (SecBot) solution.

3.1 Configuration Files

The service (/.env.dev) and workflow (/app/config.yml) configuration files are updated to meet your environ-
ment’s peculiarities and issue processing needs.

If you have made additional alterations, rebuild SecBot and start it again.

$ docker-compose stop
$ docker-compose up --build
$ docker-compose up -d

3.2 Authorization

All external units that SecBot communicates with via APIs require authorization. Therefore, the user that performs the
communication should have the respective tokens.

For GitLab

1. Sign in to your account

2. Click the profile icon in the upper-right corner and then click Edit profile

3. Click Access Token on the User Settings left-side menu

4. On the open page, enter your Token name, check the Expiration date, select read_api under Select scopes, and
then click the Create personal access token button below

9

Security Bot, Release 0.1.0

5. Copy Your new personal access token generated by GitLab and ensure you securely store it, as it will not be
displayed again.

For DefectDojo

1. Log in under the admin’s (superuser’s) account

2. Point to the Users left-side menu and then click Users

3. On the open page, click the Settings toolbar button and then click New User

4. On the Add User page, enter the following parameters of the user that will communicate with the API:

a. Username and Password under Default Information

b. Maintainer as the Global role under Global Role

5. Click the Submit button and make sure that the User has been added successfully

10 Chapter 3. Integration

Security Bot, Release 0.1.0

6. Log in under the added user’s account

7. Click the profile icon in the upper-right corner and then click API v2 Key

8. On the open page, copy Your current API key generated by DefectDojo and ensure you securely store it.

For Slack

1. Go to https://api.slack.com to sign in to your workspace

2. Create an app; to do it,

a. Click the Your Apps menu

b. Click the Create New App button on the open page

c. Choose From scratch in the open Create an app dialog box

d. Enter your App Name and Pick the workspace where you want to install this app in the following Name
app & choose workspace dialog box

e. Click the Create App button

3. Click the OAuth & Permissions left-side menu under Features on the app’s dashboard

4. Scroll down to the Scopes section and click the Add an Oath Scope button under Bot Token Scopes to select
chat:write

5. Scroll up to the OAuth Tokens for Your Workspace section and click the Install to Workspace button

3.2. Authorization 11

Security Bot, Release 0.1.0

• Allow the app to access the workspace if requested

6. Copy your Bot User OAuth Token generated by Slack and ensure you securely store it.

3.3 Input Entity Sources

The SecBot instance responsible for receiving requests to process data triggers as soon as a relevant input event comes
up. Thus, you are expected to specify these triggers for supported development and distribution platforms (Inputs).

For GitLab

1. Sign in under an admin’s account

2. Click the System Hooks left-side menu to add new or update existing system hooks

3. On the open page, enter in the URL text box the reference to the method used to receive information on changes
made to the repository in your environment

• [host]/v1/gitlab/webhook

4. Enter the authentication token for your requests in the Secret token text box

5. Select the types of input events you want to be processed under Trigger, for example, any supported Input entity
type like Push events, Tag push events, and Merge request events

12 Chapter 3. Integration

Security Bot, Release 0.1.0

6. Click the Add system hook or Save changes button below.

3.4 API

Communication with SecBot’s API involves providing input entities or receiving check results via the dedicated end-
points (instances). Follow

• [host]:5000/docs and

• [host]:5001/docs, respectively.

In the first case, mind the

1. Input entity (input event) type you will specify as the x-gitlab-event header parameter and the

2. respective payload in the request body.

A specific result is retrieved by security_check_id, which is formed by concatenating the following pieces:

1. input platform (e.g. git) prefix,

2. sha256 of the project path, and

3. complete commit hash.

security_check_id example

GIT_LOCAL_d42052411d2729e637980c355cf6a8ea8e41b8688b98c34a125b71b7f2c7f76e

3.4. API 13

Security Bot, Release 0.1.0

3.5 Pipeline

Integration of SecBot into your pipeline as an additional stage is an option we suggest that you consider. Depending
on the status received upon checks, this stage might

• get passed (‘success’),

• stay pending (‘not_started’ or ‘in_progress’), or

• fail (‘error’ or ‘fail’).

The following excerpt demonstrates a comprehensive example of how this integration can be implemented.

Excerpt from .../pipeline.yml

...

.gate-sec-scripts:
before_script:
- apk add curl jq
- SECURITY_CHECK_URL="https://[gateway_url]/v1/security/gitlab/check"
- SECURITY_CHECK_UID="GIT_LOCAL_$(echo -n "${CI_SERVER_HOST}:${CI_PROJECT_PATH}_${CI_

→˓COMMIT_SHA}" | sha256sum | head -c64)"
script:

- SECURITY_CHECK_STATUS=$(curl -k -s -w " %{http_code}" $SECURITY_CHECK_URL/$
→˓{SECURITY_CHECK_UID})

- SECURITY_CHECK_STATUS_JSON=$(echo $SECURITY_CHECK_STATUS | awk '{print $1}')
- SECURITY_CHECK_STATUS_CODE=$(echo $SECURITY_CHECK_STATUS | awk '{print $2}')
- |
if ["$SECURITY_CHECK_STATUS_CODE" != "200"]; then
echo " Something went wrong, status: $SECURITY_CHECK_STATUS"
exit 1

fi
- SECURITY_CHECK_STATUS_JSON_STATUS_DESCRIPTION=''
- SECURITY_CHECK_STATUS_JSON_STATUS=$(echo $SECURITY_CHECK_STATUS_JSON | jq -r '.

→˓status')
- |
if [$SECURITY_CHECK_STATUS_JSON_STATUS = "fail"]; then
SECURITY_CHECK_STATUS_JSON_STATUS_DESCRIPTION="--> Vulnerabilities found"

elif [$SECURITY_CHECK_STATUS_JSON_STATUS = "success"]; then
SECURITY_CHECK_STATUS_JSON_STATUS_DESCRIPTION="--> No vulnerabilities found"

fi
- echo " Response Code --> $SECURITY_CHECK_STATUS_CODE"
- echo " Status --> $SECURITY_CHECK_STATUS_JSON_STATUS $SECURITY_CHECK_STATUS_JSON_

→˓STATUS_DESCRIPTION"
...

14 Chapter 3. Integration

CHAPTER

FOUR

GLOSSARY AND INVENTORY

On this page, you will find the

• brief explanations of the units SecBot’s architecture is based on,

• lists of those supported and used in configuration, and

• descriptions of other related concepts.

Input
Input is a code repository, storage, or development or distribution platform, such as GitLab or Docker Registry,
changes to which need extended security-related validation.

Input Source
gitlab GitLab Docs

Input entity
Input entity (or input event) is a substantial amount of data (payload) to be validated. This data can be filtered
out based on some configuration rules so that only part of it is actually checked. You can specify one or more of
the event types we support (see the following table) and any other keys (JSON paths) of your choice.

Event type Source
push Webhook events: push events
tag_push Webhook events: tag events
merge_request Webhook events: merge request events

Excerpt from /app/config.yml

...
jobs:
- name: Common merge request event
rules:

gitlab: # reserved name (Input)
event_type: "merge_request" # one of the filtering parameters (Event␣

→˓type)
...

Scan
Scan is an external code analysis tool for applying the DevOps and security best practices to development and

15

https://docs.gitlab.com/ee/
https://docs.gitlab.com/ee/user/project/integrations/webhook_events.html#push-events
https://docs.gitlab.com/ee/user/project/integrations/webhook_events.html#tag-events
https://docs.gitlab.com/ee/user/project/integrations/webhook_events.html#merge-request-events

Security Bot, Release 0.1.0

integration flows. It, for example, can detect hardcoded secrets (passwords, API keys, or tokens in Git reposi-
tories) or evaluate how certain changes might affect the overall quality or performance of your application. The
result of its work is raw defect data to be passed to Outputs.

Scan Source
gitleaks Gitleaks on GitHub

Output
Output is an external defect management system specially integrated with SecBot to aggregate the check results
from different Scans, merge the duplicates, and do other relevant things to prepare a normalized readable report
for Notifiers. A piece of this report (problem, vulnerability, or any other security issue) is called “finding.”

Output Source
defectdojo DefectDojo on GitHub

Findings
For findings, see “Output.”

Notifier
Notifier (referred to as “notification” in the /app/config.py file) is an instant messaging program integrated with
SecBot to inform interested parties of detected security issues (findings).

Notifier Source
slack Slack Website

Job
Job is three sets of tasks, at least one for a Scan, one for an Output, and one for a Notifier, to be executed
sequentially to process a particular input entity type and yield the relevant results (findings).

The Security Bot (SecBot) is an orchestration service designed to communicate with various external units (see the
following scheme) to detect security-related issues in developers’ code. It can be implemented as an extra pipeline stage
to be passed (along with linting, unit-tests, and build) or used in any other way.

In its work, this service

1. receives from development and distribution platforms (“Inputs”) information on changes that a software engineer
contributes (“input entity”)

2. based on its configuration and the input entity’s type, draws up a processing plan (“job”; see an example of it
later)

3. according to this plan, creates a necessary number of tasks for different units to be successively performed to

a. scan the input entity with code analysis tools (“Scans”)

b. aggregate the found security issues from Scans, merge duplicates, and do other relevant things with defect
management systems (“Outputs”)

c. inform the interested parties of the results by means of instant messaging (“Notifiers”)

4. provides the “Input” platforms with the check results (status) on request. (Based on this status—“success” or
“fail”—the changes being contributed are allowed or blocked.)

16 Chapter 4. Glossary and Inventory

https://github.com/gitleaks/gitleaks
https://github.com/DefectDojo
https://slack.com/

Security Bot, Release 0.1.0

Note: As the scheme suggests, SecBot is split into two instances running in separate containers to ensure high avail-
ability and distribute the load. One instance is responsible for receiving requests to process data, whereas the other is
dedicated to providing the results of this processing.

The following example of a processing plan, presented as a graph, implies that SecBot’s job is configured to use two
Scans, three Outputs, and one Notifier. The overall number of tasks is 11.

17

Security Bot, Release 0.1.0

18 Chapter 4. Glossary and Inventory

INDEX

F
Findings, 16

I
Input, 15
Input entity, 15

J
Job, 16

N
Notifier, 16

O
Output, 16

S
Scan, 15

19

	Getting Started
	Prerequisites
	Deployment
	Service Configuration
	Workflow Configuration
	Integration

	Configuration
	Service Configuration
	Workflow Configuration

	Integration
	Configuration Files
	Authorization
	Input Entity Sources
	API
	Pipeline

	Glossary and Inventory
	Index

