

Welcome to Security Bot’s documentation!

The Security Bot (SecBot) is an orchestration service designed to
communicate with various external units (see the following scheme)
to detect security-related issues in developers’ code. It can be implemented
as an extra pipeline stage to be passed (along with linting, unit-tests, and
build) or used in any other way.

In its work, this service

	receives from development and distribution platforms (“Inputs”) information on changes that a software engineer contributes (“input entity”)

	based on its configuration and the input entity’s type, draws up a processing plan (“job”; see an example of it later)

	according to this plan, creates a necessary number of tasks for different units to be successively performed to

	scan the input entity with code analysis tools (“Scans”)

	aggregate the found security issues from Scans, merge duplicates, and do other relevant things with defect management systems (“Outputs”)

	inform the interested parties of the results by means of instant messaging (“Notifiers”)

	provides the “Input” platforms with the check results (status) on request. (Based on this status—“success” or “fail”—the changes being contributed are allowed or blocked.)

[image: General scheme]

Note

As the scheme suggests, SecBot is split into two instances running in
separate containers to ensure high availability and distribute the load.
One instance is responsible for receiving requests to process data, whereas
the other is dedicated to providing the results of this processing.

The following example of a processing plan, presented as a graph, implies that
SecBot’s job is configured to use two Scans, three Outputs, and one Notifier.
The overall number of tasks is 11.

[image: Job graph]

Getting Started

On this page, you will find all the necessary information to dive into the
Security Bot (SecBot) project to

	set up the service and the documentation generator it uses,

	configure and integrate it with your service,

	ensure communication via API, and

	get familiar with the main concepts and limits.

Yet, we provide detailed descriptions and insights on separate pages of this
documentation.

Prerequisites

Since SecBot is a Python application running in a container on Kubernetes,
make sure that the relevant components and their packages are installed and
available in your local environment.

Kubernetes-related:

	Docker [https://docs.docker.com/get-docker/]

	Kubernetes [https://kubernetes.io/docs/setup/]

	Kubernetes Cluster [https://kubernetes.io/docs/tasks/tools/]

	Container registry, for example Docker Hub [https://docs.docker.com/docker-hub/]

	and other Containerization tools, for example Docker Compose [https://docs.docker.com/compose/install/]

Python-related:

	Python [https://docs.python.org/3/using/index.html]

	PIP [https://packaging.python.org/en/latest/tutorials/installing-packages/#installing-pip-setuptools-wheel-with-linux-package-managers]

	Poetry [https://python-poetry.org/docs/#installing-with-the-official-installer]

Additionally, we employ

	Sphinx [https://docs.readthedocs.io/en/stable/intro/getting-started-with-sphinx.html#quick-start] as a documentation generator and

	draw.io [https://app.diagrams.net/] as a tool for creating schemes and diagrams.

Deployment

Follow these general steps to install and build the SecBot

	Clone the repository:

	visit the project’s repository to copy the URL under Clone

	run the git clone command to create a local copy

$ git clone path/to/project.git

	Build and run the SecBot service.

$ docker-compose up --build

Service Configuration

The /.env.dev file defines the location, keys, and other parameters of the
internal and external units SecBot communicates with: queues, databases,
Inputs, Scans, Outputs, and Notifiers.

	Review this file and make the necessary changes to it based on your environment’s peculiarities, such as the variables within GITLAB_CONFIGS.

	Save the file and rebuild the service.

$ docker-compose up --build

For test and other reasons, you can redefine any parameter in the
/.env.override file for your separate sandbox environment. To do this,

	Rename the original file of /.env.override.example accordingly

	Specify the new values of existing variables there, for example modify DEFECTDOJO__TOKEN=defectdojo_token

Excerpt from .env.override

...
DEFECTDOJO__TOKEN=my_personal_token
...

	Save the file.

	Rebuild the service.

$ docker-compose up --build

Note

For more detailed information on this topic, see
Configuration.

Workflow Configuration

The /app/config.yml file defines the policies SecBot follows in its work:
which Scans to launch to check input entities of a particular type, which
Outputs to use to aggregate the Scans’ results, and so on. You can take the
original version and use it as is or update the file according to your needs.
In the latter case, you will need stop and restart the service.

$ docker-compose stop
$ docker-compose up -d

Note

For more detailed information on this topic, see
Configuration.

Integration

Since SecBot communicates with different units via their respective APIs and
triggers in response to specific input events, you are expected to

	obtain authorization with these units (Inputs, Outputs, and Notifiers) and

	specify triggers on your development and distribution platform (Input), such as system hooks (or webhooks) for GitLab.

Configuration

The content of this page is focused on the peculiarities and details of the
service and workflow configuration files to let you make more informed
decisions when customizing the Security Bot (SecBot) service for your needs.

Service Configuration

SecBot’s configuration implies setting up all the

	internal (queues and databases) and

	external (Inputs, Scans, Outputs, and Notifiers) units

this service collaborates with and specifying other relevant parameters
(metrics) as well.

Therefore, you need to review and update the respective /.env.dev file in
advance to reflect your environment’s peculiarities.

Excerpt from .env.dev

...
CELERY_BROKER_URL=redis://redis:6379/0
CELERY_RESULT_BACKEND=redis://redis:6379/0

SECBOT_POSTGRES_DSN=postgresql+asyncpg://secbot:foobar@db:5432/secbot

GITLAB_CONFIGS=[
 {
 "host":"https://git.env.local/", # GitLab's host (instance)
 "webhook_secret_token":"SecretStr", # secret token used when a webhook is being set up
 "auth_token":"SecretStr", # token given to the user who will communicate with the API to get check results
 "prefix":"GIT_LOCAL" # prefix used when a security_check_id is being generated
 }
]

DEFECTDOJO__URL=https://defectdojo.env.local # DefectDojo's host
DEFECTDOJO__TOKEN=defectdojo_token # token given upon user registration to communicate with the DefectDojo's API
DEFECTDOJO__USER=defectdojo_username # registered user's name
DEFECTDOJO__USER_ID=10 # registered user's ID

SLACK_TOKEN=token_here # token given to the user that is allowed to read Slack's channels
...

After that, save the file and rebuild the service.

$ docker-compose up --build

Additionally, according to the /.gitignore file, any parameter specified
in /env.dev can be redefined in /.env.override for testing and other
purposes.

Excerpt from .gitignore

...
Personal override env
.env.override
...

To do this,

	Rename the original file of /.env.override.example accordingly

	Specify the new values of existing variables there, for example modify DEFECTDOJO__TOKEN=defectdojo_token

Excerpt from .env.override

...
DEFECTDOJO__TOKEN=my_personal_token
...

	Save the file.

	Rebuild the service.

Workflow Configuration

The workflow configuration is a set of policies according to which SecBot
reacts to incoming events, processes the data, and yields the results. This
configuration is based on the app/config.yml file that contains two
sections: components and jobs.

The first section introduces the hired external units (Scans, Outputs, and
Notifiers) which SecBot collaborates with. It might include a unit’s name
(handler name) and its settings: format of data it returns, URLs, keys, etc.

The following excerpt shows an example of three units belonging to different
types. (The environment variable values refer to the .env.dev file.)

Excerpt from app/config.yml

...
components:
 # Scan Gitleaks
 gitleaks:
 handler_name: "gitleaks"
 config:
 format: "json" # data format in a response
 # Output DefectDojo
 defectdojo:
 handler_name: "defectdojo"
 env:
 url: "DEFECTDOJO__URL" # host
 secret_key: "DEFECTDOJO__TOKEN" # token given upon user registration to communicate with the API
 user: "DEFECTDOJO__USER" # registered user's name
 lead_id: "DEFECTDOJO__USER_ID" # registered user's ID
 # Notifier Slack
 slack:
 handler_name: "slack"
 config:
 render_limit: 10 # maximum number of lines (findings) in a notification
 channel: # channels to report findings
 - test-sec-security-bot
 - my-personal-channel
 env:
 token: "SLACK_TOKEN" # token given to the user that is allowed to read the channels
...

Note

For now, these are the only components SecBot collaborates with. However,
it must be sufficient for the first version of the product to let you
assess its work.

The second section, “jobs”, defines the policies SecBot follows in its work to
yield the results. When a specific event matching the rules of a
policy comes up, a processing plan (job) is created. It contains the necessary
number of tasks to be sequentially executed by the relevant external units
(components).

The following excerpts from the app/config.yml file show an example of one job
to explain the idea.

Excerpt from app/config.yml

...
jobs:
 # human-readable job name to be used as a reference in logs
 - name: Common merge request event

 # two-level identifier of an input entity
 rules:
 gitlab: # first level
 event_type: "merge_request" # second level
 project.path_with_namespace: /gitlab-test/ # second level

, where

	first level is a development or distribution platform (Input) or any custom workflow name.

	second level is Input entity (input event) types and keys (JSON path strings) to apply checks and filtration within the input events. For available keys, refer to the objects from a payload (request body). For example, project.path_with_parameters from POST [host]/v1/gitlab/webhook enables the filtering of input events originating from specific repositories.

Also, note that the arguments at the second level are joined with logical AND
unless they are matching and thus mutually exclusive. That is, if, for
example, event_type: "tag_push" and event_type: "merge_request" are
specified in the same job, the last one will be taken.

Excerpt from app/config.yml (continuation)

 # handlers to find leaks, vulnerabilities, and other security-related issues
 scans:
 - gitleaks

 # handlers to aggregate and normalize the Scans' results
 outputs:
 - defectdojo

 # handlers to report the Outputs' results
 notifications:
 - slack
...

Note

For now, only one job is allowed to cover a particular event. If your
configuration implies that two or more jobs can be created to serve the
same event, it will result in an error.

Information from the app/config.yml file is read once as soon as SecBot
starts. Therefore, if you make any changes to it, you need to stop and restart
the service to apply them.

$ docker-compose stop
$ docker-compose up -d

Integration

On this page, you will find an adequate checklist and step-by-step
instructions to ensure the successful integration of your service with the
Security Bot (SecBot) solution.

Configuration Files

The service (/.env.dev) and workflow (/app/config.yml)
configuration files are updated to meet your
environment’s peculiarities and issue processing needs.

If you have made additional alterations, rebuild SecBot and start it again.

$ docker-compose stop
$ docker-compose up --build
$ docker-compose up -d

Authorization

All external units that SecBot communicates with via APIs require
authorization. Therefore, the user that performs the communication should have
the respective tokens.

For GitLab

	Sign in to your account

	Click the profile icon in the upper-right corner and then click Edit profile

	Click Access Token on the User Settings left-side menu

	On the open page, enter your Token name, check the Expiration date, select read_api under Select scopes, and then click the Create personal access token button below

[image: GitLab access token]

	Copy Your new personal access token generated by GitLab and ensure you securely store it, as it will not be displayed again.

For DefectDojo

	Log in under the admin’s (superuser’s) account

	Point to the Users left-side menu and then click Users

	On the open page, click the Settings toolbar button and then click New User

	On the Add User page, enter the following parameters of the user that will communicate with the API:

	Username and Password under Default Information

	Maintainer as the Global role under Global Role

	Click the Submit button and make sure that the User has been added successfully

[image: DefectDojo SecBot user]

	Log in under the added user’s account

	Click the profile icon in the upper-right corner and then click API v2 Key

	On the open page, copy Your current API key generated by DefectDojo and ensure you securely store it.

For Slack

	Go to https://api.slack.com to sign in to your workspace

	Create an app; to do it,

	Click the Your Apps menu

	Click the Create New App button on the open page

	Choose From scratch in the open Create an app dialog box

	Enter your App Name and Pick the workspace where you want to install this app in the following Name app & choose workspace dialog box

	Click the Create App button

	Click the OAuth & Permissions left-side menu under Features on the app’s dashboard

	Scroll down to the Scopes section and click the Add an Oath Scope button under Bot Token Scopes to select chat:write

	Scroll up to the OAuth Tokens for Your Workspace section and click the Install to Workspace button

	Allow the app to access the workspace if requested

	Copy your Bot User OAuth Token generated by Slack and ensure you securely store it.

[image: Slack Dashboard]

Input Entity Sources

The SecBot instance responsible for receiving requests to process data
triggers as soon as a relevant input event comes up. Thus, you are expected to
specify these triggers for supported development and distribution platforms
(Inputs).

For GitLab

	Sign in under an admin’s account

	Click the System Hooks left-side menu to add new or update existing system hooks

	On the open page, enter in the URL text box the reference to the method used to receive information on changes made to the repository in your environment

	[host]/v1/gitlab/webhook

	Enter the authentication token for your requests in the Secret token text box

	Select the types of input events you want to be processed under Trigger, for example, any supported Input entity type like Push events, Tag push events, and Merge request events

[image: GitLab system hooks]

	Click the Add system hook or Save changes button below.

API

Communication with SecBot’s API involves providing input entities or receiving
check results via the dedicated endpoints (instances). Follow

	[host]:5000/docs and

	[host]:5001/docs, respectively.

In the first case, mind the

	Input entity (input event) type you will specify as the x-gitlab-event header parameter and the

	respective payload in the request body.

A specific result is retrieved by security_check_id, which is formed by
concatenating the following pieces:

	input platform (e.g. git) prefix,

	sha256 of the project path, and

	complete commit hash.

security_check_id example

GIT_LOCAL_d42052411d2729e637980c355cf6a8ea8e41b8688b98c34a125b71b7f2c7f76e

Pipeline

Integration of SecBot into your pipeline as an additional stage is an option
we suggest that you consider. Depending on the status received upon checks,
this stage might

	get passed (‘success’),

	stay pending (‘not_started’ or ‘in_progress’), or

	fail (‘error’ or ‘fail’).

The following excerpt demonstrates a comprehensive example of how this
integration can be implemented.

Excerpt from .../pipeline.yml

...
.gate-sec-scripts:
 before_script:
 - apk add curl jq
 - SECURITY_CHECK_URL="https://[gateway_url]/v1/security/gitlab/check"
 - SECURITY_CHECK_UID="GIT_LOCAL_$(echo -n "${CI_SERVER_HOST}:${CI_PROJECT_PATH}_${CI_COMMIT_SHA}" | sha256sum | head -c64)"
 script:
 - SECURITY_CHECK_STATUS=$(curl -k -s -w " %{http_code}" $SECURITY_CHECK_URL/${SECURITY_CHECK_UID})
 - SECURITY_CHECK_STATUS_JSON=$(echo $SECURITY_CHECK_STATUS | awk '{print $1}')
 - SECURITY_CHECK_STATUS_CODE=$(echo $SECURITY_CHECK_STATUS | awk '{print $2}')
 - |
 if ["$SECURITY_CHECK_STATUS_CODE" != "200"]; then
 echo " Something went wrong, status: $SECURITY_CHECK_STATUS"
 exit 1
 fi
 - SECURITY_CHECK_STATUS_JSON_STATUS_DESCRIPTION=''
 - SECURITY_CHECK_STATUS_JSON_STATUS=$(echo $SECURITY_CHECK_STATUS_JSON | jq -r '.status')
 - |
 if [$SECURITY_CHECK_STATUS_JSON_STATUS = "fail"]; then
 SECURITY_CHECK_STATUS_JSON_STATUS_DESCRIPTION="--> Vulnerabilities found"
 elif [$SECURITY_CHECK_STATUS_JSON_STATUS = "success"]; then
 SECURITY_CHECK_STATUS_JSON_STATUS_DESCRIPTION="--> No vulnerabilities found"
 fi
 - echo " Response Code --> $SECURITY_CHECK_STATUS_CODE"
 - echo " Status --> $SECURITY_CHECK_STATUS_JSON_STATUS $SECURITY_CHECK_STATUS_JSON_STATUS_DESCRIPTION"
...

Glossary and Inventory

On this page, you will find the

	brief explanations of the units SecBot’s architecture is based on,

	lists of those supported and used in configuration, and

	descriptions of other related concepts.

	Input
	Input is a code repository, storage, or development or distribution
platform, such as GitLab or Docker Registry, changes to which need
extended security-related validation.

	Input

	Source

	gitlab

	GitLab Docs [https://docs.gitlab.com/ee/]

	Input entity
	Input entity (or input event) is a substantial amount of data
(payload) to be validated. This data can be filtered out based on some
configuration rules so that only part of it is actually checked. You
can specify one or more of the event types we support (see the
following table) and any other keys (JSON paths) of your choice.

	Event type

	Source

	push

	Webhook events: push events [https://docs.gitlab.com/ee/user/project/integrations/webhook_events.html#push-events]

	tag_push

	Webhook events: tag events [https://docs.gitlab.com/ee/user/project/integrations/webhook_events.html#tag-events]

	merge_request

	Webhook events: merge request events [https://docs.gitlab.com/ee/user/project/integrations/webhook_events.html#merge-request-events]

Excerpt from /app/config.yml

...
jobs:
 - name: Common merge request event
 rules:
 gitlab: # reserved name (Input)
 event_type: "merge_request" # one of the filtering parameters (Event type)
...

	Scan
	Scan is an external code analysis tool for applying the DevOps and
security best practices to development and integration flows. It, for
example, can detect hardcoded secrets (passwords, API keys, or tokens
in Git repositories) or evaluate how certain changes might affect the
overall quality or performance of your application. The result of its
work is raw defect data to be passed to Outputs.

	Scan

	Source

	gitleaks

	Gitleaks on GitHub [https://github.com/gitleaks/gitleaks]

	Output
	Output is an external defect management system specially integrated
with SecBot to aggregate the check results from different Scans, merge
the duplicates, and do other relevant things to prepare a normalized
readable report for Notifiers. A piece of this report (problem,
vulnerability, or any other security issue) is called “finding.”

	Output

	Source

	defectdojo

	DefectDojo on GitHub [https://github.com/DefectDojo]

	Findings
	For findings, see “Output.”

	Notifier
	Notifier (referred to as “notification” in the /app/config.py file)
is an instant messaging program integrated with SecBot to inform
interested parties of detected security issues (findings).

	Notifier

	Source

	slack

	Slack Website [https://slack.com/]

	Job
	Job is three sets of tasks, at least one for a Scan, one for an
Output, and one for a Notifier, to be executed sequentially to process
a particular input entity type and yield the relevant results (findings).

Index

 F
 | I
 | J
 | N
 | O
 | S

F

 	
 	Findings

I

 	
 	Input

 	
 	Input entity

J

 	
 	Job

N

 	
 	Notifier

O

 	
 	Output

S

 	
 	Scan

 nav.xhtml

 Table of Contents

 		
 Welcome to Security Bot’s documentation!

_images/job-graph.drawio.png
Job 1: for an input entity 1

output 1

notifier 1

e

output3

_images/slack-dashboard.png
5= slack api

‘ test-app

Settings

Basic Information
Collaborators
Socket Mode

Install App

Manage Distribution

Features

App Home

Org Level Apps
Incoming Webhooks
Interactivity & Shortcuts

Slash Commands

User ID Translation

App Manifest New

Beta Features

Submit to App

Q Search

OAuth & Permissions

Advanced token security via token rotation

Recommended for developers building on or for security-minded organizations -
opting into token rotation allows app tokens to automatically expire after they're
issued within your app code. View documentation.

/\ At least one redirect URL needs to be set below before this app can be
opted into token rotation

Opt In

OAuth Tokens for Your Workspace

These tokens were automatically generated when you installed the app to your team.
You can use these to authenticate your app. Learn more.

Bot User OAuth Token

‘ xoxb-

Access Level: Workspace

Documentation Tutorials| Your Apps

_static/plus.png

_static/file.png

_static/minus.png

_images/general-scheme.drawio.png
PostgreSQL

(inpat entits)

service.

(check results)

Security Bot

input ontties

Redis

_images/gitlab-access-token.png
Q Search GitLab

. User Settings

User Settings > Access Tokens.

@ Profile
£ hcsount [searcnpoge S— l
83 Applications Personal Access Tokens Add a personal access token Edit profile
& You can generate a personal access token for each Enter the name of your application, and we'll return a unique personal access t¢ preferences.
application you use that needs access to the GitLab
Access Tokens APL Token name Sign out
; Security Bot Integration
Emails
You can also use personal access tokens to o
O authenticate against Git over HTTP. They are the only For example, the application using the token or the purpose of the token. o not give sensitive information for the

accepted password when you have Two-Factor name of the token, as it will be visible to all project members.

Authentication (2FA) enabled. Expiration date

PG Keys | 2037-03-01 oo
Preferences E
Select scopes

Scopes set the permission levels granted to the token. Learn more.

) api
® Usage Quotas Grants complete read/write access to the AP, including all groups and projects, the container registry, and the
package registry.
@ read_api

Grants read access to the AP, including all groups and projects, the clntainer registry, and the package
registry.

() read_user

Grants read-only access to the authenticated user's profile through tHe /user API endpoint, which includes
username, public email, and full name. Also grants access to read-onlf APl endpoints under /users.

() read_repository
Grants read-only access to repositories on private projects using Git-der-HTTP or the Repository Files API.
() write_repository
Grants read-write access to repositories on private projects using Git-pver-HTTP (not using the API)
(] read_registry
Grants read-only access to container registry images on private projeks.
() write_registry
Grants write access to container registry images on private projects.

Active Sessions

(=]
®
=]
Jat
£ SSHKeys
L
=2
=]

@ Authentication Log

Create personal access token

_images/defectdojo-user.png
d JEFECTOOJ0O

@ Dashboard
Home / All Users / Add User

roducts
Q Engagements Add User
Default Information
J# Findings.
22 Components Username’ @ security-bot
& Endpoints Password @
B Reports First name
Ll Metrics.
e
sers Users
s
4 Calendar Groups
@ active
1 Questionnaires @
Osuperuser status @

Configuration

© Collapse Menu Additional Contact Information
Title

Phone number @
Cell number @
Twitter username
Github username

Slack Email Address @

OBlock execution @

OForce password reset @

Global Role

Global role @

Submit

Search...

_images/gitlab-system-hooks.png
Admin Area > System Hooks > Edit System Hook

Edit System Hook URL
System Hooks enable you to send ‘ https://security-bot.env.local/vi/gitiab/webhook
notifications to web applications in

: § URL must be percent-encoded if necessary.
response to events in a group or project.

Secret token

Use this token to validate received payloads.
Trigger

System hooks are triggered on sets of events like creating a project or adding an SSH key. You can also enable extra triggers, such as push
events.

@ Repository update events
URL is triggered when repository is updated

@ Push events
URL is triggered for each branch updated to the repository

@ Tag push events
URL s triggered when a new tag is pushed to the repository

@ Merge request events.
URL s triggered when a merge request is created, updated, or merged

SSL verification
@ Enable SSL verification

